
Digital UNIX�����������������
Program Analysis Using Atom Tools

March 1996

Product Version: Digital UNIX Version 4.0 or higher

This document describes how to develop program-analysis tools using
the code instrumentation interface provided by Atom in the programming
development environment for the Digital UNIX operating system.

It also provides details on Third Degree, one of the prepackaged
program-analysis tools provided with Atom.

(The two chapters in this document were copied from the March 1996
edition of the Programmer’s Guide.)

�����������������
Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL–IN–1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,
POLYCENTER, Q–bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc. UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents����������������������

About This Document

Audience .. xix

Organization .. xix

Related Documents .. xix

Conventions .. xx

1 Using and Developing Atom Tools

1.1 Using Prepackaged Atom Tools .. 1–2

1.2 Developing Atom Tools ... 1–3

1.2.1 The ATOM Command Line ... 1–4
1.2.2 Atom Instrumentation Routine .. 1–7
1.2.3 Atom Instrumentation Interfaces 1–8

1.2.3.1 Navigating Within a Program 1–8
1.2.3.2 Building Objects .. 1–9
1.2.3.3 Obtaining Information About an Application’s

Components ... 1–9
1.2.3.4 Resolving Procedure Names and Call Targets 1–13
1.2.3.5 Adding Calls to Analysis Routines to a Program 1–13

1.2.4 Atom Description File ... 1–14
1.2.5 Writing Analysis Procedures .. 1–15

1.2.5.1 Input/Output .. 1–15
1.2.5.2 Fork and Exec System Calls 1–15

1.2.6 Determining the Instrumented PC from an Analysis Routine . 1–16

1.2.7 Sample Tools ... 1–22

1.2.7.1 Procedure Tracing .. 1–22
1.2.7.2 Profile Tool ... 1–25
1.2.7.3 Data Cache Simulation Tool 1–28

2 Debugging Programs with Third Degree

2.1 Running Third Degree on an Application 2–2

2.1.1 Using Third Degree with Shared Libraries 2–3
2.1.2 Using Third Degree with Threaded Applications 2–4

2.2 Step-by-Step Example .. 2–4

2.2.1 Customizing Third Degree ... 2–4
2.2.2 Modifying the Makefile ... 2–5
2.2.3 Examining the Third Degree Log File 2–5

2.2.3.1 Copy of the .third File .. 2–5
2.2.3.2 List of Runtime Memory Access Errors 2–5
2.2.3.3 Memory Leaks ... 2–7
2.2.3.4 Heap History ... 2–8
2.2.3.5 Memory Layout ... 2–9

2.3 Interpreting Third Degree Error Messages 2–9

2.3.1 Fixing Errors and Retrying an Application 2–11
2.3.2 Detecting Uninitialized Values ... 2–11
2.3.3 Locating Source Files .. 2–12

2.4 Examining an Application’s Heap Usage 2–12

2.4.1 Detecting Memory Leaks ... 2–13
2.4.2 Reading Heap and Leak Reports 2–14
2.4.3 Searching for Leaks .. 2–15
2.4.4 Interpreting the Heap History ... 2–15

2.5 Using Third Degree on Programs with Insufficient Symbolic
Information .. 2–18

2.6 Validating Third Degree Error Reports ... 2–18

2.7 Undetected Errors .. 2–19

iv Contents

Tables

1-1: Supported Prepackaged Atom Tools .. 1–2

1-2: Example Prepackaged Atom Tools ... 1–2

1-3: Atom Object Query Routines ... 1–10

1-4: Atom Procedure Query Routines .. 1–11

1-5: Atom Basic Block Query Routines ... 1–12

1-6: Atom Instruction Query Routines ... 1–12

Contents v

About This Document����������������������
This document describes how to use and create Atom-based program analysis
tools that run in the programming environment supported by the Digital
UNIX® operating system.

Note

The contents of this document were copied from the March 1996
edition of the Programmer’s Guide.

Audience
This document addresses programmers who need to use or develop Atom-
based program analysis tools.

Organization
This document contains two chapters.

Chapter 1 Describes how to design and create custom Atom tools. It also
describes how to use prepackaged Atom tools to instrument an
application program for various purposes, such as to obtain
profiling data or to perform cache-use analysis.

Chapter 2 Describes how to use Atom’s Third Degree tool to perform
memory access checks and leak detection on an application
program.

Related Documents
The following manuals contain information pertaining to program
development:

Programming: General

Programmer’s Guide

Calling Standard for Alpha Systems

Assembly Language Programmer’s Guide

Programming Support Tools

Network Programmer’s Guide

Digital Portable Mathematics Library

Writing Software for the International Market

Kernel Debugging

Ladebug Debugger Manual

Programming: Compatibility, Migration, and Standards

ULTRIX to Digital UNIX Migration Guide

VAX System V to Digital UNIX Migration Guide

System V Compatibility User’s Guide

POSIX Conformance Document

XPG3 Questionnaire

Programming: Realtime

Guide to Realtime Programming

Programming: Streams

Programmer’s Guide: STREAMS

Programming: Multithreaded Applications

Guide to DECthreads

General User Information

Release Notes

Documentation Overview

Conventions

%
$

A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates typed user input.

file Italic (slanted) type indicates variable values, placeholders, and
function argument names.

[|]
{ | }

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

xx About This Document

. . . In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

About This Document xxi

1Using and Developing Atom Tools����������������������
Program analysis tools are extremely important for computer architects and
software engineers. Computer architects use them to test and measure new
architectural designs, and software engineers use them to identify critical
pieces of code in programs or to examine how well a branch prediction or
instruction scheduling algorithm is performing. Program analysis tools are
needed for problems ranging from basic block counting to instruction and
data cache simulation. Although the tools that accomplish these tasks may
appear quite different, each can be implemented simply and efficiently
through code instrumentation.

Atom provides a flexible code instrumentation interface that is capable of
building a wide variety of tools. Atom separates the common part in all
problems from the problem-specific part by providing machinery for
instrumentation and object-code manipulation, and allowing the tool designer
to specify what points in the program are to be instrumented. Atom is
independent of any compiler and language as it operates on object modules
that make up the complete program.

Atom, as provided in the Digital UNIX operating system, provides the
following:

• A set of prepackaged tools that may be used to instrument applications
for profiling or debugging purposes. Use the following command to
apply one of these tools to a given application:

atom application_program –tool toolname –env environment

• A command interface and a collection of instrumentation routines that
may be used to create custom Atom tools. Use the following command
to create a custom-designed Atom tool:

atom application_program instrumentation_file analysis_file

The atom(1) reference page describes both forms of the atom command.

This chapter contains the following sections:

• Section 1.1 describes the prepackaged Atom tools and how to use them.

• Section 1.2 discusses how you can develop specialized Atom tools.

1.1 Using Prepackaged Atom Tools
The Digital UNIX operating system provides and supports the Atom tools
listed in Table 1-1.

Table 1-1: Supported Prepackaged Atom Tools
���
Tool Description���
Third Degree (third) Performs memory access checks and detects memory

leaks in an application. The Third Degree Atom tool
is described in Chapter 2 and in the third(5)
reference page.

hiprof Produces a flat profile of an application that shows
the execution time spent in a given procedure and a
hierarchical profile that shows the execution time
spent in a given procedure and all its descendants.
The hiprof Atom tool is described in the
Programmer’s Guide and hiprof(5).

pixie Partitions an application into basic blocks and counts
the number of times each basic block is executed.
The pixie Atom tool is described in the
Programmer’s Guide and pixie(5).���

The Digital UNIX operating system provides the unsupported Atom tools
listed in Table 1-2 as examples for programmers developing custom-designed
Atom tools. These tools are distributed in source form to illustrate Atom’s
programming interfaces. Some of the tools are further described in Section
1.2.

Table 1-2: Example Prepackaged Atom Tools
��
Tool Description��
branch Instruments all conditional branches to determine how many

are predicted correctly.

cache Determines cache miss rate if application runs in 8K direct-
mapped cache.

dtb Determines the number of dtb (data translation buffer) misses
if the application uses 8KB pages and a fully associative
translation buffer.

dyninst Provides fundamental dynamic counts of instructions, loads,
stores, blocks, and procedures.

1–2 Using and Developing Atom Tools

Table 1-2: (continued)
��
Tool Description��
inline Identifies potential candidates for inlining.

iprof Prints the number of times each procedure is called as well as
the number of instructions executed (dynamic count) by each
procedure.

malloc Records each call to the malloc function and prints a
summary of the application’s allocated memory.

prof Prints the number of instructions executed (dynamic count)
by each procedure.

ptrace Prints the name of each procedure as it is called.

trace Generates an address trace, logs the effective address of every
load and store operation, and logs the address of the start of
every basic block as it is executed.��

1.2 Developing Atom Tools
An Atom tool consists of the following:

• An instrumentation file – Modifies the application to which it is applied
by adding calls at well-defined locations to tool-specific analysis
procedures.

• An analysis file – Defines the procedures and data structures required to
implement the tool’s functionality.

Atom views an application as a hierarchy of components:

1. The program, including the executable and all shared libraries.

2. A collection of objects. An object can be either the main executable or
any shared library. An object has its own set of attributes (such as its
name) and consists of a collection of procedures.

3. A collection of procedures, each of which consists of a collection of basic
blocks.

4. A collection of basic blocks, each of which consists of a collection of
instructions.

5. A collection of instructions.

Atom tools insert instrumentation points in an application program at
procedure, basic block, or instruction boundaries. For example, basic block
counting tools instrument the beginning of each basic block, data cache

Using and Developing Atom Tools 1–3

simulators instrument each load and store instruction, and branch prediction
analyzers instrument each conditional branch instruction.

At any instrumentation point, Atom allows a tool to insert a procedure call to
an analysis routine. The tool can specify that the procedure call be made
before or after an object, procedure, basic block, or instruction.

1.2.1 The ATOM Command Line
The command line used to apply Atom tools to an application is described
completely in the atom(1) reference page. This section describes the
command line and its most commonly used arguments and flags.

The atom command line has two forms:

atom application_program –tool toolname[–env environment] [flags...]

This form of the atom command is used to build an instrumented
version of an application program using a prepackaged Atom tool.

This form requires the –tool flag and accepts the –env flag. It does
not allow either the instrumentation_file or the
analysis_file parameter.

The –tool flag identifies the prepackaged Atom tool to be used. By
default, Atom searches for prepackaged tools in the
/usr/lib/cmplrs/atom/tools and
/usr/lib/cmplrs/atom/examples directories. You can add
directories to the search path by supplying a colon-separated list of
additional directories to the ATOMTOOLPATH environment variable.

The –env flag identifies any special environment (for instance,
threads) in which the tool is to operate. The set of environments
supported by a given tool is defined by the tool’s creator and listed in
the tool’s documentation. Atom displays an error if you specify an
environment that is undefined for the tool. The prepackaged tools allow
you to omit the –env flag to obtain a general-purpose environment.

atom application_program instrumentation_file[analysis_file] [flags...]

This form of the atom command is used to apply a tool that
instruments an application program. This form requires the
instrumentation_file parameter and accepts the
analysis_file parameter.

The instrumentation_file parameter specifies the name of a C
source file or an object module that contains the Atom tool’s
instrumentation procedures. By convention, most instrumentation files
have the suffix .inst.c or .inst.o.

1–4 Using and Developing Atom Tools

The analysis_file parameter specifies the name of a C source file
or an object module that contains the Atom tool’s analysis procedures.
Note that you do not need to specify an analysis file if the
instrumentation file does not call analysis procedures. By convention,
most analysis files have the suffix .anal.c or .anal.o.

You can have multiple instrumentation and analysis source files. The
following example creates composite instrumentation and analysis objects
from several source files:
% cc -c file1.c file2.c

% cc -c file7.c file8

% ld -r -o tool.inst.o file1.o file2.o

% ld -r -o tool.anal.o file7.o file8.o

% atom hello tool.inst.o tool.anal.o -o hello.tool

Note

You can also write analysis procedures in C++. You must assign
a type of ‘‘extern "C"’’ to each procedure to allow it to be
called from the application. You must also compile and link the
analysis files before issuing the atom command. For example:
% cxx -c tool.a.C

% ld -r -o tool.anal.o tool.a.o -lcxx -lexc

% atom hello tool.inst.c tool.anal.o -o hello.tool

With the exception of the –tool and –env flags, both forms of the atom
command accept any of the remaining flags described in the atom(1)
reference page. The following are some flags that deserve special
mentioning:

–A1
Causes Atom to optimize calls to analysis routines by reducing the
number of registers that need to be saved and restored. For some tools,
specifying this flag increases the performance of the instrumented
application by a factor of 2 (at the expense of some increase in
application size). The default behavior is for Atom not to apply these
optimizations.

–debug
Allows you to debug instrumentation routines by causing Atom to
transfer control to the symbolic debugger at the start of the
instrumentation routine. In the following example, the ptrace sample
tool is run under the dbx debugger. The instrumentation is stopped at

Using and Developing Atom Tools 1–5

line 12, and the procedure name is printed.
% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -debug
dbx version 3.11.8
Type ’help’ for help.
Stopped in InstrumentAll
(dbx) stop at 12
[4] stop at "/udir/test/scribe/atom.user/tools/ptrace.inst.c":12
(dbx) c
[3] [InstrumentAll:12 ,0x12004dea8] if (name == NULL) name = "UNKNOWN";
(dbx) p name
0x2a391 = "__start"

–g
Causes Atom to build the analysis procedures with debugging symbol
table information, allowing you to run instrumented applications under a
symbolic debugger. Atom assumes that the application itself runs
correctly, allowing debugger commands to be used only on analysis
procedures. For example:
% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -g

% dbx hello.ptrace
dbx version 3.11.8
Type ’help’ for help.
(dbx) stop in ProcTrace
[2] stop in ProcTrace
(dbx) r
[2] stopped at [ProcTrace:5 ,0x120005574] fprintf (stderr,"%s\n",name);
(dbx) n
__start

[ProcTrace:6 ,0x120005598] }

–toolargs
Passes arguments to the Atom tool’s instrumentation routine. Atom
passes the arguments in the same way that they are passed to C
programs, using the argc and argv arguments to the main program.
For example:
#include <stdio.h>
unsigned InstrumentAll(int argc, char **argv) {

int i;
for (i = 0; i < argc; i++) {

printf(stderr,"argv[%d]: %s\n",argv[i]);
}

}

The following example shows how Atom passes the –toolargs
arguments:
% atom hello args.inst.c -toolargs="8192 4"
argv[0]: hello
argv[1]: 8192
argv[2]: 4

1–6 Using and Developing Atom Tools

1.2.2 Atom Instrumentation Routine
Atom invokes a tool’s instrumentation routine on a given application
program when that program is specified as the application_program
parameter to the atom command, and either of the following is true:

• The tool is a prepackaged tool specified as an argument to the –tool
flag of an atom command. By default, Atom looks for prepackaged
tools in the /usr/lib/cmplrs/atom/tools and
/usr/lib/cmplrs/atom/examples directories.

• The file containing the instrumentation routine is specified as the
instrumentation_file parameter of an atom command.

The instrumentation routine contains the code that traverses the objects,
procedures, basic blocks, and instructions to locate instrumentation points;
adds calls to analysis procedures; and builds the instrumented version of an
application.

As described in the atom_instrumentation_routines(5) reference
page, an instrumentation routine can employ one of the following interfaces
based on the needs of the tool:

Instrument (int iargc, char **iargv, Obj *obj)

Atom calls the Instrument routine for each object in the application
program. As a result, an Instrument routine does not need to use the
object navigation routines (such as GetFirstObj). Because Atom
automatically writes each object before passing the next to the
Instrument routine, the Instrument routine should never call the
BuildObj, WriteObj, or ReleaseObj routine. When using the
Instrument interface, you can define an InstrumentInit routine
to perform tasks required before Atom calls Instrument for the first
object (such as defining analysis routine prototypes, adding program
level instrumentation calls, and performing global initializations). You
can also define an InstrumentFini routine to perform tasks required
after Atom calls Instrument for the last object (such as global
cleanup).

InstrumentAll (int iargc, char **iargv)

Atom calls the InstrumentAll routine once for the entire application
program, thus allowing a tool’s instrumentation code itself to determine
how to traverse the application’s objects. With this method, there are no
InstrumentInit or InstrumentFini routines. An
InstrumentAll routine must call the Atom object navigation
routines and use the BuildObj, WriteObj, or ReleaseObj routine
to manage the application’s objects.

Using and Developing Atom Tools 1–7

Regardless of the instrumentation routine interface, Atom passes the
arguments specified in the -toolargs flag to the routine. In the case of
the Instrument interface, Atom also passes a pointer to the current object.

1.2.3 Atom Instrumentation Interfaces
Atom provides a comprehensive interface for instrumenting applications.
The interface supports the following types of activities:

• Navigating among a program’s objects, procedures, basic blocks, and
instructions. See Section 1.2.3.1.

• Building, releasing, and writing objects. See Section 1.2.3.2.

• Obtaining information about the different components of an application.
See Section 1.2.3.3.

• Resolving procedure names and call targets. See Section 1.2.3.4.

• Adding calls to analysis routines at desired locations in the program. See
Section 1.2.3.5.

1.2.3.1 Navigating Within a Program

The Atom application navigation routines, described in the
atom_application_navigation(5) reference page, allow an Atom
tool’s instrumentation routine to find locations in an application at which to
add calls to analysis procedures.

• The GetFirstObj, GetLastObj, GetNextObj, and GetPrevObj
routines navigate among the objects of a program. For nonshared
programs, there is only one object. For call-shared programs, the first
object corresponds to the main program. The remaining objects are each
of its dynamically linked shared libraries.

• The GetFirstObjProc and GetLastObjProc routines return a
pointer to the first or last procedure, respectively, in the specified object.
The GetNextProc and GetPrevProc routines navigate among the
procedures of an object.

• The GetFirstBlock, GetLastBlock, GetNextBlock, and
GetPrevBlock routines navigate among the basic blocks of a
procedure.

• The GetFirstInst, GetLastInst, GetNextInst, and
GetPrevInst routines navigate among the instructions of a basic
block.

• The GetInstBranchTarget routine returns a pointer to the
instruction that is the target of a specified branch instruction.

1–8 Using and Developing Atom Tools

• The GetProcObj routine returns a pointer to the object that contains
the specified procedure. Similarly, the GetBlockProc routine returns a
pointer to the procedure that contains the specified basic block, and the
GetInstBlock routine returns a pointer to the basic block that
contains the specified instruction.

1.2.3.2 Building Objects

The Atom object management routines, described in the
atom_object_management(5) reference page, allow an Atom tool’s
InstrumentAll routine to build, write, and release objects.

The BuildObj routine builds the internal data structures Atom requires to
manipulate the object. An InstrumentAll routine must call the
BuildObj routine before traversing the procedures in the object and adding
analysis routine calls to the object. The WriteObj routine writes the
instrumented version the specified object, deallocating the internal data
structures the BuildObj routine previously created. The ReleaseObj
routine deallocates the internal data structures for the given object, but does
not write out the instrumented version the object.

The IsObjBuilt routine returns a nonzero value if the specified object has
been built with the BuildObj routine but not yet written with the
WriteObj routine or unbuilt with the ReleaseObj routine.

1.2.3.3 Obtaining Information About an Application’s Components

The Atom application query routines, described in the
atom_application_query(5) reference page, allow an instrumentation
routine to obtain static information about a program and its objects,
procedures, basic blocks, and instructions.

The GetAnalName routine returns the name of the analysis file, as passed
to the atom command. This routine is useful for tools that have a single
instrumentation file and multiple analysis files. For example, multiple cache
simulators might share a single instrumentation file but each have a different
analysis file.

The GetProgInfo routine returns the number of objects in a program.

Table 1-3 lists the routines that provide information about a program’s
objects.

Using and Developing Atom Tools 1–9

Table 1-3: Atom Object Query Routines
��
Routine Description��
GetObjInfo Returns information about an object’s text, data, and

bss segments; the number of procedures, basic
blocks, or instructions it contains; its object ID; or a
Boolean hint as to whether the given object should
be excluded from instrumentation.

GetObjInstArray Returns an array consisting of the 32-bit instructions
included in the object.

GetObjInstCount Returns the number of instructions in the array
included in the array returned by the
GetObjInstArray routine.

GetObjName Returns the original filename of the specified object.

GetObjOutName Returns the name of the instrumented object.��

The following instrumentation routine, which prints statistics about the
program’s objects, demonstrates the use of Atom object query routines:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3 unsigned InstrumentAll(int argc, char **argv)
4 {
5 Obj *o; Proc *p;
6 const unsigned int *textSection;
7 long textStart;
8 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) {
9 BuildObj(o);

10 textSection = GetObjInstArray(o);
11 textStart = GetObjInfo(o,ObjTextStartAddress);
12 printf("Object %d\n", GetObjInfo(o,ObjID));
13 printf(" Object name: %s\n", GetObjName(o));
14 printf(" Text segment start: 0x%lx\n", textStart);
15 printf(" Text size: %ld\n", GetObjInfo(o,ObjTextSize));
16 printf(" Second instruction: 0x%x\n", textSection[1]);
17 ReleaseObj(o);
18 }
19 return(0);
20 }

Because the instrumention routine adds no procedures to the executable, there
is no need for an analysis procedure. The following example demonstrates
the process of compiling and instrumenting a program with this tool. A
sample run of the instrumented program prints the object identifier, the
compile-time starting address of the text segment, the size of the text
segment, and the binary for the second instruction. The disassembler

1–10 Using and Developing Atom Tools

provides a convenient method for finding the corresponding instructions.
% cc hello.c -o hello

% atom hello info.inst.c -o hello.info
Object 0

Object Name: hello
Start Address: 0x120000000
Text Size: 8192
Second instruction: 0x239f001d

Object 1
Object Name: /usr/shlib/libc.so
Start Address: 0x3ff80080000
Text Size: 901120
Second instruction: 0x239f09cb

% dis hello | head -3
0x120000fe0: a77d8010 ldq t12, -32752(gp)
0x120000fe4: 239f001d lda at, 29(zero)
0x120000fe8: 279c0000 ldah at, 0(at)

% dis /ust/shlib/libc.so | head -3
0x3ff800bd9b0: a77d8010 ldq t12,-32752(gp)
0x3ff800bd9b4: 239f09cb lda at,2507(zero)
0x3ff800bd9b8: 279c0000 ldah at, 0(at)

Table 1-4 lists the routines that provide information about an object’s
procedures:

Table 1-4: Atom Procedure Query Routines
��
Routine Description��
GetProcInfo Returns information pertaining to the procedure’s

stack frame, register-saving, register-usage, and
prologue characteristics as defined in the Calling
Standard for Alpha Systems and the Assembly
Language Programmer’s Guide. Such values are
important to tools, like Third Degree, that monitor
the stack for access to uninitialized variables. It can
also return such information about the procedure as
the number of basic blocks or instructions it
contains, its procedure ID, its lowest or highest
source line number, or an indication if its address
has been taken.

ProcFileName Returns the name of the source file that contains the
procedure.

ProcName Returns the procedure’s name.

ProcPC Returns the compile-time program counter (PC) of
the first instruction in the procedure.��

Using and Developing Atom Tools 1–11

Table 1-5 lists the routines that provide information about a procedure’s basic
blocks:

Table 1-5: Atom Basic Block Query Routines
��
Routine Description��
BlockPC Returns the compile-time program counter (PC) of

the first instruction in the basic block.

GetBlockInfo Returns the number of instructions in the basic block
or the block ID. The block ID is unique to this
basic block within its containing object.

IsBranchTarget Indicates if the block is the target of a branch
instruction.��

Table 1-6 lists the routines that provide information about a basic block’s
instructions:

Table 1-6: Atom Instruction Query Routines
��
Routine Description��
GetInstBinary Returns a 32-bit binary representation of the

assembly language instruction.

GetInstClass Returns the instruction class (for instance, floating-
point load or integer store) as defined by the Alpha
Architecture Reference Manual. An Atom tool uses
this information to determine instruction scheduling
and dual issue rules.

GetInstInfo Parses the entire 32-bit instruction and obtains all or
a portion of that instruction.

GetInstRegEnum Returns the register type (floating-point or integer)
from an instruction field as returned by the
GetInstInfo routine.

GetInstRegUsage Returns a bit mask with one bit set for each possible
source register and one bit set for each possible
destination register.

InstPC Returns the compile-time program counter (PC) of
the instruction.

InstLineNo Returns the instruction’s source line number.

1–12 Using and Developing Atom Tools

Table 1-6: (continued)
��
Routine Description��
IsInstType Indicates whether the instruction is of the specified

type (load instruction, store instruction, conditional
branch, or unconditional branch).��

1.2.3.4 Resolving Procedure Names and Call Targets

Resolving procedure names and subroutine targets is trivial for nonshared
programs because all procedures are contained in the same object. However,
the target of a subroutine branch in a call-shared program could be in any
object.

The Atom application procedure name and call target resolution routines,
described in the atom_application_resolvers(5) reference page,
allow an Atom tool’s instrumentation routine to find a procedure by name
and to find a target procedure for a call site:

• The ResolveTargetProc routine attempts to resolve the target of a
procedure call.

• The ResolveNamedProc routine returns the procedure identified by
the specified name string.

• The ReResolveProc routine completes a procedure resolution if the
procedure initially resided in an unbuilt object.

1.2.3.5 Adding Calls to Analysis Routines to a Program

The Atom application instrumentation routines, described in the
atom_application_instrumentation(5) reference page, add
arbitrary procedure calls at various points in the application:

• You must use the AddCallProto routine to specify the prototype of
each analysis procedure to be added to the program. In other words, an
AddCallProto call must define the procedural interface for each
analysis procedure used in calls to AddCallProgram, AddCallObj,
AddCallProc, AddCallBlock, and AddCallInst. Atom provides
facilities for passing integers and floating-point numbers, arrays, branch
condition values, effective addresses, cycle counters, as well as procedure
arguments and return values.

• Use the AddCallProgram routine in an instrumentation routine to add
a call to an analysis procedure before a program starts execution or after
it completes execution. Typically, such an analysis procedure does

Using and Developing Atom Tools 1–13

something that applies to the whole program, such as opening an output
file or parsing command line options.

• Use the AddCallObj routine in an instrumentation routine to add a call
to an analysis procedure before an object starts execution or after it
completes execution. Typically such an analysis procedure does
something that applies to the single object, such as initializing some data
for its procedures.

• Use the AddCallProc routine in an instrumentation routine to add a
call to an analysis procedure before a procedure starts execution or after it
completes execution.

• Use the AddCallBlock routine in an instrumentation routine to add a
call to an analysis procedure before a basic block starts execution or after
it completes execution.

• Use the AddCallInst routine in an instrumentation routine to add a
call to an analysis procedure before a given instruction executes or after it
executes.

• Use the ReplaceProcedure routine to replace a procedure in the
instrumented program. For example, the Third Degree Atom tool
replaces memory allocation functions such as malloc and free with its
own versions to allow it to check for invalid memory accesses and
memory leaks.

1.2.4 Atom Description File
An Atom tool’s description file, as described in the
atom_description_file(5) reference page, identifies and describes the
tool’s instrumentation and analysis files. It can also specify the flags to be
used by the cc, ld, and atom commands when it is compiled, linked, and
invoked. Each Atom tool must supply at least one description file.

There are two types of Atom description file:

• A description file providing an environment for generalized use of the
tool. A tool can provide only one general-purpose environment. The
name of this type of description file has the format:

tool.desc

• A description file providing an environment for use of the tool in specific
contexts, such as in a multithreaded application or in kernel mode. A
tool can provide several special-purpose environments, each of which has
its own description file. The name of this type of description file has the
format:

tool.environment.desc

1–14 Using and Developing Atom Tools

The names supplied for the tool and environment portions of these
description file names correspond to values the user specifies to the –tool
and –env flags of an atom command when invoking the tool.

An Atom description file is a text file containing a series of tags and values.
See atom_description_file(5) for a complete description of the file’s
syntax.

1.2.5 Writing Analysis Procedures
An instrumented application calls analysis procedures to perform the specific
functions defined by an Atom tool. An analysis procedure can use any
system call or library function, even if the same call or function is
instrumented within the application. The routines used by the analysis
routine and the instrumented application are physically distinct.

1.2.5.1 Input/Output

An analysis procedure that uses the standard I/O library should take care to
explicitly close file descriptors before the instrumented application exits.
The standard I/O library buffers read and write requests to optimize disk
accesses. It flushes an output buffer to disk either when it is full or when a
procedure calls the fflush function. If the instrumented application exits
before an analysis procedure properly closes its output file descriptors, the
procedure’s output may not be completely written.

Some Atom tool analysis procedures may print results to stdout or
stderr. Because the file descriptors for these I/O streams are closed when
an instrumented application calls the exit function, an analysis routine that
is called from an instrumentation point set by a call to the ProgramAfter
routine can no longer send output to either. Analysis procedures written in
C++ must also take care when using the cout and cerr functions. Because
these streams are buffered by the class library, an analysis routine must call
cout.flush() or cerr.flush() before the instrumented application
exits.

1.2.5.2 Fork and Exec System Calls

If a process calls a fork function but does not call an exec function, the
process is cloned and the child inherits an exact copy of the parent’s state. In
many cases, this is exactly the behavior than an Atom tool expects. For
example, an instruction-address tracing tool sees references for both the
parent and the child, interleaved in the order in which the references
occurred.

In the case of an instruction-profiling tool (for example, the trace tool
referenced in Table 1-2), the file is opened at a ProgramBefore
instrumentation point and, as a result, the output file descriptor is shared

Using and Developing Atom Tools 1–15

between the parent and the child processes. If the results are printed at a
ProgramAfter instrumentation point, the output file contains the parent’s
data, followed by the child’s data (assuming that the parent process finishes
first).

For tools that count events, the data structures that hold the counts should be
returned to zero in the child process after the fork call because the events
occurred in the parent, not the child. This type of Atom tool can support
correct handling of fork calls by instrumenting the fork library procedure
and calling an analysis procedure with the return value of the fork routine
as an argument. If the analysis procedure is passed a return value of 0 (zero)
in the argument, it knows that it was called from a child process. It can then
reset the counts variable or other data structures so that they tally statistics
for only the child process.

1.2.6 Determining the Instrumented PC from an Analysis Routine
The Atom Xlate routines, described in Xlate(5), allow you to determine the
instrumented PC for selected instructions. You can use these functions to
build a table that translates an instruction’s PC in the instrumented
application to its PC in the uninstrumented application.

To enable analysis code to determine the instrumented PC of an instruction at
runtime, an Atom tool’s instrumentation routine must select the instruction
and place it into an address translation buffer (XLATE).

An Atom tool’s instrumentation routine creates and fills the address
translation buffer by calling the CreateXlate and AddXlateAddress
routines, respectively. An address translation buffer can only hold
instructions from a single object.

The AddXlateAddress routine adds the specified instruction to an
existing address translation buffer.

An Atom tool’s instrumentation passes an address translation buffer to an
analysis routine by passing it as a parameter of type XLATE *, as indicated
in the analysis routine’s prototype definition in an AddCallProto call.

Another way to determine an instrumented PC is to specify a formal
parameter type of REGV in an analysis routine’s prototype and pass the
REG_IPC value.

An Atom tool’s analysis routine uses the following interfaces to access an
address translation buffer passed to it:

• The XlateNum routine returns the number of addresses in the specified
address translation buffer.

• The XlateInstTextStart routine returns the starting address of the
text segment for the instrumented object corresponding to the specified
address translation buffer.

1–16 Using and Developing Atom Tools

• The XlateInstTextSize routine returns the size of the text segment.

• The XlateLoadShift routine returns the difference between the
runtime addresses in the object corresponding to the specified address
translation buffer and the compile-time addresses.

• The XlateAddr routine returns the instrumented runtime address for the
instruction in the specified position of the specified address translation
buffer. Note that the runtime address for an instruction in a shared library
is not necessarily the same as its compile-time address.

The following example demonstrates the use of the Xlate routines by the
instrumentation and analysis files of a tool that uses the Xlate routines. This
tool prints the target address of every jump instruction. To use it, issue the
following instruction:
% atom progname xlate.inst.c xlate.anal.c -all

The following source listing (xlate.inst.c) contains the instrumentation
for the xlate tool:

#include <stdlib.h>
#include <stdio.h>
#include <alpha/inst.h>
#include <cmplrs/atom.inst.h>

static void address_add(unsigned long);
static unsigned address_num(void);
static unsigned long * address_paddrs(void);
static void address_free(void);

void InstrumentInit(int iargc, char **iargv)
{

/* Create analysis prototypes. */
AddCallProto("RegisterNumObjs(int)");
AddCallProto("RegisterXlate(int, XLATE *, long[0])");
AddCallProto("JmpLog(long, REGV)");

/* Pass the number of objects to the analysis routines. */
AddCallProgram(ProgramBefore, "RegisterNumObjs",

GetProgInfo(ProgNumberObjects));
}

Instrument(int iargc, char **iargv, Obj *obj)
{

Proc * p;
Block * b;
Inst * i;
Xlate * pxlt;
union alpha_instruction bin;
ProcRes pres;
unsigned long pc;
char proto[128];

/*
* Create an XLATE structure for this Obj. We use this to translate
* instrumented jump target addresses to pure jump target addresses.

Using and Developing Atom Tools 1–17

*/
pxlt = CreateXlate(obj, XLATE_NOSIZE);

for (p = GetFirstObjProc(obj); p; p = GetNextProc(p)) {
for (b = GetFirstBlock(p); b; b = GetNextBlock(b)) {

/*
* If the first instruction in this basic block has had its
* address taken, it’s a potential jump target. Add the
* instruction to the XLATE and keep track of the pure address
* too.
*/

i = GetFirstInst(b);
if (GetInstInfo(i, InstAddrTaken)) {

AddXlateAddress(pxlt, i);
address_add(InstPC(i));

}

for (; i; i = GetNextInst(i)) {
bin.word = GetInstInfo(i, InstBinary);
if (bin.common.opcode == op_jsr &&

bin.j_format.function == jsr_jmp)
{

/*
* This is a jump instruction. Instrument it.
*/

AddCallInst(i, InstBefore, "JmpLog", InstPC(i),
GetInstInfo(i, InstRB));

}
}

}
}

/*
* Re-prototype the RegisterXlate() analysis routine now that we
* know the size of the pure address array.
*/

sprintf(proto, "RegisterXlate(int, XLATE *, long[%d])", address_num());
AddCallProto(proto);

/*
* Pass the XLATE and the pure address array to this object.
*/

AddCallObj(obj, ObjBefore, "RegisterXlate", GetObjInfo(obj, ObjID),
pxlt, address_paddrs());

/*
* Deallocate the pure address array.
*/

address_free();
}

/*
** Maintains a dynamic array of pure addresses.
*/
static unsigned long * pAddrs;
static unsigned maxAddrs = 0;
static unsigned nAddrs = 0;

/*
** Add an address to the array.

1–18 Using and Developing Atom Tools

*/
static void address_add(

unsigned long addr)
{

/*
* If there’s not enough room, expand the array.
*/

if (nAddrs >= maxAddrs) {
maxAddrs = (nAddrs + 100) * 2;
pAddrs = realloc(pAddrs, maxAddrs * sizeof(*pAddrs));
if (!pAddrs) {

fprintf(stderr, "Out of memory\n");
exit(1);

}
}

/*
* Add the address to the array.
*/

pAddrs[nAddrs++] = addr;
}

/*
** Return the number of elments in the address array.
*/
static unsigned address_num(void)
{

return(nAddrs);
}

/*
** Return the array of addresses.
*/
static unsigned long *address_paddrs(void)
{

return(pAddrs);
}

/*
** Deallocate the address array.
*/
static void address_free(void)
{

free(pAddrs);
pAddrs = 0;
maxAddrs = 0;
nAddrs = 0;

}

Using and Developing Atom Tools 1–19

The following source listing (xlate.anal.c) contains the analysis routine
for the xlate tool:
#include <stdlib.h>
#include <stdio.h>
#include <cmplrs/atom.anal.h>

/*
* Each object in the application gets one of the following data
* structures. The XLATE contains the instrumented addresses for
* all possible jump targets in the object. The array contains
* the matching pure addresses.
*/

typedef struct {
XLATE * pXlt;
unsigned long * pAddrsPure;

} ObjXlt_t;

/*
* An array with one ObjXlt_t structure for each object in the
* application.
*/

static ObjXlt_t * pAllXlts;
static unsigned nObj;
static int translate_addr(unsigned long, unsigned long *);
static int translate_addr_obj(ObjXlt_t *, unsigned long,

unsigned long *);

/*
** Called at ProgramBefore. Registers the number of objects in
** this application.
*/
void RegisterNumObjs(

unsigned nobj)
{

/*
* Allocate an array with one element for each object. The
* elements are initialized as each object is loaded.
*/

nObj = nobj;
pAllXlts = calloc(nobj, sizeof(pAllXlts));
if (!pAllXlts) {

fprintf(stderr, "Out of Memory\n");
exit(1);

}
}

/*
** Called at ObjBefore for each object. Registers an XLATE with
** instrumented addresses for all possible jump targets. Also
** passes an array of pure addresses for all possible jump targets.
*/
void RegisterXlate(

unsigned iobj,
XLATE * pxlt,
unsigned long * paddrs_pure)

{
/*
* Initialize this object’s element in the pAllXlts array.
*/

1–20 Using and Developing Atom Tools

pAllXlts[iobj].pXlt = pxlt;
pAllXlts[iobj].pAddrsPure = paddrs_pure;

}

/*
** Called at InstBefore for each jump instruction. Prints the pure
** target address of the jump.
*/
void JmpLog(

unsigned long pc,
REGV targ)

{
unsigned long addr;

printf("0x%lx jumps to - ", pc);
if (translate_addr(targ, &addr))

printf("0x%lx\n", addr);
else

printf("unknown\n");
}

/*
** Attempt to translate the given instrumented address to its pure
** equivalent. Set ’*paddr_pure’ to the pure address and return 1
** on success. Return 0 on failure.
**
** Will always succede for jump target addresses.
*/
static int translate_addr(

unsigned long addr_inst,
unsigned long * paddr_pure)

{
unsigned long start;
unsigned long size;
unsigned i;

/*
* Find out which object contains this instrumented address.
*/

for (i = 0; i < nObj; i++) {
start = XlateInstTextStart(pAllXlts[i].pXlt);
size = XlateInstTextSize(pAllXlts[i].pXlt);
if (addr_inst >= size && addr_inst < start + size) {

/*
* Found the object, translate the address using that
* object’s data.
*/

return(translate_addr_obj(&pAllXlts[i], addr_inst,
paddr_pure));

}
}

/*
* No object contains this address.
*/

return(0);
}

/*
** Attempt to translate the given instrumented address to its

Using and Developing Atom Tools 1–21

** pure equivalent using the given object’s translation data.
** Set ’*paddr_pure’ to the pure address and return 1 on success.
** Return 0 on failure.
*/
static int translate_addr_obj(

ObjXlt_t * pObjXlt,
unsigned long addr_inst,
unsigned long * paddr_pure)

{
unsigned num;
unsigned i;

/*
* See if the instrumented address matches any element in the XLATE.
*/

num = XlateNum(pObjXlt->pXlt);
for (i = 0; i < num; i++) {

if (XlateAddr(pObjXlt->pXlt, i) == addr_inst) {
/*
* Matches this XLATE element, return the matching pure
* address.
*/

*paddr_pure = pObjXlt->pAddrsPure[i];
return(1);

}
}

/*
* No match found, must not be a possible jump target.
*/

return(0);
}

1.2.7 Sample Tools
This section describes the basic tool building interface by using three simple
examples: procedure tracing, instruction profiling, and data cache simulation.

1.2.7.1 Procedure Tracing

The ptrace tool prints the names of procedures in the order in which they
are executed. The implementation adds a call to each procedure in the
application. By convention, the instrumentation for the ptrace tool is
placed in the file ptrace.inst.c.
1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h> �1 �����
3
4 unsigned InstrumentAll(int argc, char **argv) �2 �����
5 {
6 Obj *o; Proc *p;
7 AddCallProto("ProTrace(char *)"); �3 �����
8 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) { �4 �����
9 if (BuildObj(o) return 1; �5 �����

10 for (p = GetFirstObjProc(o); p != NULL; p = GetNextProc(p)) { �6 �����
11 const char *name = ProcName(p); �7 �����
12 if (name == NULL) name = "UNKNOWN"; �8 �����

1–22 Using and Developing Atom Tools

13 AddCallProc(p,ProcBefore,"ProcTrace",name); �9 �����
14 }
15 WriteObj(o); �10 �������
16 }
17 return(0);
18 }

�1 ����� Includes the definitions for Atom instrumentation routines and data
structures.

�2 ����� Defines the InstrumentAll procedure. This instrumentation routine
defines the interface to each analysis procedure and inserts calls to those
procedures at the correct locations in the applications it instruments.

�3 ����� Calls the AddCallProto routine to define the ProcTrace analysis
procedure. ProcTrace takes a single argument of type char *.

�4 ����� Calls the GetFirstObj and GetNextObj routines to cycle through
each object in the application. If the program was linked nonshared,
there is only a single object. If the program was linked call-shared, it
contains multiple objects – one for the main executable and one for each
dynamically-linked shared library. The main program is always the first
object.

�5 ����� Builds the first object. Objects must be built before they can be used. In
very rare circumstances, the object cannot be built. The
InstrumentAll routine reports this condition to Atom by returning a
nonzero value.

�6 ����� Calls the GetFirstObjProc and GetNextProc routines to step
through each procedure in the application program.

�7 ����� For each procedure, calls the ProcName procedure to find the procedure
name. Depending on the amount of symbol table information that is
available in the application, some procedure names, such as those defined
as static, may not be available. (Compiling applications with the –g1
flag provides this level of symbol information.) In these cases, Atom
returns NULL.

�8 ����� Converts the NULL procedure name string to ‘‘UNKNOWN’’.

�9 ����� Calls the AddCallProc routine to add a call to the procedure pointed
to by p. The ProcBefore argument indicates that the analysis
procedure is to be added before all other instructions in the procedure.
The name of the analysis procedure to be called at this instrumentation
point is ProcTrace. The final argument is to be passed to the analysis
procedure. In this case, it is the procedure named obtained on Line 11.

�10 ������� Writes the instrumented object file to disk.

The instrumentation file added calls to the ProcTrace analysis procedure.
This procedure is defined in the analysis file ptrace.anal.c as shown in

Using and Developing Atom Tools 1–23

the following example:
1 #include <stdio.h>
2
3 void ProcTrace(char *name)
4 {
5 fprintf(stderr, "%s\n",name);
6 }

The ProcTrace analysis procedure prints, to stderr, the character string
passed to it as an argument. Note that an analysis procedure cannot return a
value.

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the following
application:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

The following example builds a nonshared executable, applies the ptrace
tool, and runs the instrumented executable. This simple program calls almost
30 procedures.
% cc -non_shared hello.c -o hello

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace

% hello.ptrace
__start
main
printf
_doprnt
__getmbcurmax
strchr
strlen
memcpy
.
.
.

The following example repeats this process with the application linked call-
shared. The major difference is that the LD_LIBRARY_PATH environment
variable must be set to the current directory because Atom creates an
instrumented version of the libc.so shared library in the local directory.
% cc hello.c -o hello

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace

% setenv LD_LIBRARY_PATH ‘pwd‘

% hello.ptrace
__start

1–24 Using and Developing Atom Tools

_call_add_gp_range
__exc_add_gp_range
malloc
cartesian_alloc
cartesian_growheap2
__getpagesize
__sbrk
.
.
.

The call-shared version of the application calls almost twice the number of
procedures that the nonshared version calls.

Note that only calls in the original application program are instrumented.
Because the call to the ProcTrace analysis procedure did not occur in the
original application, it does not appear in a trace of the instrumented
application procedures. Likewise, the standard library calls that print the
names of each procedure are also not included. If the application and the
analysis program both call the printf function, Atom would link into the
instrumented application two copies of the function. Only the copy in the
application program would be instrumented. Atom also correctly instruments
procedures that have multiple entry points.

1.2.7.2 Profile Tool

The prof example tool counts the number of instructions a program
executes. It is useful for finding critical sections of code. Each time the
application is executed, prof creates a file called prof.out that contains a
profile of the number of instructions that are executed in each procedure.

The most efficient place to compute instruction counts is inside each basic
block. Each time a basic block is executed, a fixed number of instructions
are executed. The following example shows how the prof tool’s
instrumentation procedure (prof.inst.c) performs these tasks:
1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3
4 unsigned InstrumentAll(int argc, char **argv)
5 {
6 Obj *o; Proc *p; Block *b; Inst *i;
7 int n = 0;
8 AddCallProto("OpenFile(int)"); �1 �����
9 AddCallProto("Count(int,int)");

10 AddCallProto("Print(int,char *)");
11 AddCallProto("CloseFile()");
12 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) { �2 �����
13 if (BuildObj(o)) return (1); �3 �����
14 for (p = GetFirstObjProc(o); p != NULL; p = GetNextProc(p)) { �4 �����
15 const char *name = ProcName(p); �5 �����
16 if (name == NULL) name = "UNKNOWN";

Using and Developing Atom Tools 1–25

17 for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock(b)) { �6 �����
18 AddCallBlock(b,BlockBefore,"Count",n, �7 �����

GetBlockInfo(b,BlockNumberInsts));
19 }
20 AddCallProgram(ProgramAfter,"Print",n,name); �8 �����
21 n++; �9 �����
22 }
23 WriteObj(o); �10 �������
24 }
25 AddCallProgram(ProgramBefore,"OpenFile",n); �11 �������
26 AddCallProgram(ProgramAfter,"CloseFile"); �12 �������
27 return (0);
28 }

�1 ����� Defines the interface to the analysis procedures.

�2 ����� Loops through each object in the program.

�3 ����� Builds an object.

�4 ����� Loops through each procedure in the object.

�5 ����� Determines the procedure name.

�6 ����� Loops through each basic block in the procedure.

�7 ����� Adds a call to the Count analysis procedure before any of the
instructions in this basic block are executed. The argument types of the
Count are defined in the prototype on Line 9. The first argument is a
procedure index of type int; the second argument, also an int, is the
number of instructions in the basic block. The Count analysis procedure
adds the number of instructions in the basic block to a per-procedure data
structure.

�8 ����� Adds a call to the Print analysis procedure to the end of the program.
The Print analysis procedure prints a line summarizing this procedure’s
instruction use.

�9 ����� Increments the procedure index.

�10 ������� Writes the object file.

�11 ������� Adds a call to the OpenFile analysis procedure to the beginning of the
program, passing it an int representing the number of procedures in the
application. The OpenFile procedure allocates the per-procedure data
structure that tallies instructions and opens the output file.

�12 ������� Adds a call to the CloseFile analysis procedure to the end of the
program.

The analysis procedures used by the prof tool are defined in the
prof.anal.c file as shown in the following example:

1–26 Using and Developing Atom Tools

1 #include <stdio.h>
2 #include <assert.h>
3
4 long *instrPerProc;
5 FILE *file;
6
7 void OpenFile(int n)
8 {
9 instrPerProc = (long *) calloc(sizeof(long),n); �1 �����

10 assert(instrPerProc != NULL);
11 file = fopen("prof.out","w");
12 assert(file != NULL);
13 fprintf(file,"%30s %15s %10s\n","Procedure","Instructions","Percentage");
14 }
15 void Count(int n, int instructions)
16 {
17 instrTotal += instructions;
18 instrPerProc[n] += instructions;
19 }
20 void Print(int n, char *name)
21 {
22 if (instrPerProc[n] > 0) { �2 �����
23 fprintf(file,"%30s %15ld %9.3f\n", name, instrPerProc[n],
24 ((float) instrPerProc[n] / instrTotal)*100.0);
25 }
26 }
27 void CloseFile() �3 �����
28 {
29 fprintf(file,"\n%30s %15ld %9.3f\n", "Total", instrTotal,100.0);
30 fclose(file);
31 }

�1 ����� Allocates the counts data structure. The calloc function zero-fills the
counts data.

�2 ����� Filters procedures that are never called.

�3 ����� Closes the output file. Tools must explicitly close files that are opened in
the analysis procedures.

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the "Hello"
application:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

The following example builds a call-shared executable, applies the prof
tool, and runs the instrumented executable. In contrast to the ptrace tool
described in Section 1.2.7.1, the prof tool sends its output to a file instead

Using and Developing Atom Tools 1–27

of stdout.
% cc hello.c -o hello

% atom hello prof.inst.c prof.anal.c -o hello.prof

% setenv LD_LIBRARY_PATH ‘pwd‘

% hello.prof

Hello world!

% more prof.out
Procedure Instructions Percentage

__start 159 4.941
main 14 0.435
.
.
.

_call_add_gp_range 41 1.274
_call_remove_gp_range 35 1.088

Total 3218 100.000
% unsetenv LD_LIBRARY_PATH

1.2.7.3 Data Cache Simulation Tool

Instruction and data address tracing has been used for many years as a
technique for capturing and analyzing cache behavior. Unfortunately, current
machine speeds make this increasingly difficult. For example, the Alvinn
SPEC92 benchmark executes 961,082,150 loads, 260,196,942 stores, and
73,687,356 basic blocks, for a total of 2,603,010,614 Alpha instructions.
Storing the address of each basic block and the effective address of all the
loads and stores would take in excess of 10GB and slow down the
application by a factor of over 100.

The cache tool uses on-the-fly simulation to determine the cache miss rates
of an application running in an 8KB direct mapped cache. The following
example shows its instrumentation routine:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3
4 unsigned InstrumentAll(int argc, char **argv)
5 {
6 Obj *o; Proc *p; Block *b; Inst *i;
7
8 AddCallProto("Reference(VALUE)");
9 AddCallProto("Print()");

10 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) {
11 if (BuildObj(o)) return (1);
12 for (p=GetFirstProc(); p != NULL; p = GetNextProc(p)) {
13 for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock(b)) {
14 for (i = GetFirstInst(b); i != NULL; i = GetNextInst(i)) { �1 �����
15 if (IsInstType(i,InstTypeLoad) || IsInstType(i,InstTypeStore)) {
16 AddCallInst(i,InstBefore,"Reference",EffAddrValue); �2 �����
17 }
18 }

1–28 Using and Developing Atom Tools

19 }
20 }
21 WriteObj(o);
22 }
23 AddCallProgram(ProgramAfter,"Print");
24 return (0);
25 }

�1 ����� Examines each instruction in the current basic block.

�2 ����� If the instruction is a load or a store, adds a call to the Reference
analysis procedure, passing the effective address of the data reference.

The analysis procedures used by the cache tool are defined in the
cache.anal.c file as shown in the following example:

1 #include <stdio.h>
2 #include <assert.h>
3 #define CACHE_SIZE 8192
4 #define BLOCK_SHIFT 5
5 long tags[CACHE_SIZE >> BLOCK_SHIFT];
6 long references, misses;
7
8 void Reference(long address) {
9 int index = (address & (CACHE_SIZE-1)) >> BLOCK_SHIFT;

10 long tag = address >> BLOCK_SHIFT;
11 if tags[index] != tag) {
12 misses++;
13 tags[index] = tag;
14 }
15 references++;
16 }
17 void Print() {
18 FILE *file = fopen("cache.out","w");
19 assert(file != NULL);
20 fprintf(file,"References: %ld\n", references);
21 fprintf(file,"Cache Misses: %ld\n", misses);
22 fprintf(file,"Cache Miss Rate: %f\n", (100.0 * misses) / references);
23 fclose(file);
24 }

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the "Hello"
application:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

Using and Developing Atom Tools 1–29

The following example applies the cache tool to instrument both the
nonshared and call-shared versions of the application:
% cc hello.c -o hello

% atom hello cache.inst.c cache.anal.c -o hello.cache -all

% setenv LD_LIBRARY_PATH ‘pwd‘

% hello.cache

Hello world!

% more cache.out
References: 1091
Cache Misses: 225
Cache Miss Rate: 20.623281
% cc -non_shared hello.c -o hello

% atom hello cache.inst.c cache.anal.c -o hello.cache -all

% hello.cache

Hello world!

% more cache.out
References: 382
Cache Misses: 93
Cache Miss Rate: 24.345550

1–30 Using and Developing Atom Tools

2Debugging Programs with Third
Degree����������������������

Third Degree is an Atom tool. It performs memory access checks and
memory leak detection of C and C++ programs at run time. It accomplishes
this by using Atom to instrument executable objects. Instrumentation is the
process of inserting instructions into existing executable objects to perform
program analysis. See Chapter 1 or atom(1) for details on Atom.

Third Degree instruments the entire program, adding code to perform run-
time checks for all of its data references. The instrumented program locates
many occurrences of the worst types of bugs in C and C++ programs: array
overflows, memory smashing, and errors in the use of the malloc and
free functions. It also helps you determine the allocation habits of your
application by listing the heap and finding memory leaks.

Except for being larger and running slower than the original application and
having its uninitialized data filled with a special pattern, the instrumented
program runs like the original. The Atom instrumentation code logs all
specified errors and generates the requested reports.

You can use Third Degree for the following types of applications:

• Applications that allocate memory by using the malloc, calloc,
realloc, valloc, alloca, and sbrk functions and the C++ new
function. You can use Third Degree to instrument programs using other
memory allocators, such as the mmap function, but it will not check
accesses to the memory thus obtained.

Third Degree detects and forbids calls to the brk function. Furthermore,
if your program allocates memory by partitioning large blocks it obtained
by using the sbrk function, Third Degree may not be able to precisely
identify memory blocks in which errors occur.

• Applications using POSIX threads (pthread) interfaces and applications
using a supported coroutine package. Most coroutine packages are
supported. If your application uses a custom threads or coroutine
package, you may not be able to use Third Degree. See Section 2.1.2 for
details.

2.1 Running Third Degree on an Application
You invoke the Third Degree tool by using the atom command, as follows:
% atom app -tool third

In this example, app is the name of an application. When it is run, the
instrumented version of the application (app.third) behaves exactly like
the original application (app), with the following exceptions:

• The code is larger and runs more slowly because of the additional
instrumentation code that is inserted.

• Each allocated heap memory object is larger because Third Degree pads it
to allow boundary checking. You can adjust the amount of padding by
specifying the object_padding option in the .third file. (See
Section 2.2.1 for a description of the .third customization file.)

• To detect errant use of uninitialized data, Third Degree initializes all
otherwise uninitialized data to a special pattern. This can cause the
instrumented program to behave differently, behave incorrectly, or crash
(particularly if this special pattern is used as a pointer). All of these
behaviors indicate a bug in the program.

You can disable Third Degree’s initialization with the –uninit_heap
and –uninit_stack option in the .third customization file.

The instrumented version of the application generates a log file (app.3log)
containing information about allocated objects and potential leaks.

Note

Third Degree writes .3log messages in a format similar to that
used by the C compiler. If you use emacs or a similar editor
that automatically points, in sequence, to each compilation error,
you can use the same editor to follow Third Degree errors. In
emacs, compile with a command such as cat app.3log, and
step through the Third Degree errors as if they were compilation
errors.

You can control the name used for the output log file by specifying one of
the following flags to the –toolargs flag on the atom command line that
invokes the Third Degree tool:

–pids
Appends the process identification number to the log file name.

–nopids
Does not append the process identification number to the log file name.
This is the default.

2–2 Debugging Programs with Third Degree

–dirnamefname
Specifies the directory path in which Third Degree creates its log file.

Depending upon the flag supplied to Third Degree in the atom command’s
–toolargs flag, the log file’s name will be as follows:
��
Flag Filename Use��

Default–nopids app.3log

–pids app.12345.3log Include pid

–dirname /tmp /tmp/app.3log Set directory

–dirname /tmp –pids /tmp/app.12345.3log Set directory and pid��

2.1.1 Using Third Degree with Shared Libraries
Errors in an application, such as passing too small a buffer to the strcpy
function, are often caught in library routines. Third Degree supports the
instrumentation of shared libraries; it instruments programs linked with the
–non_shared or –call_shared flags.

The atom command provides the following flags to allow you to determine
which shared libraries are instrumented by Third Degree:

–all
Instruments all statically loaded shared libraries in the shared executable.

–excobj objname
Excludes the named shared library from instrumentation. You can use
the –excobj flag more than once to specify several shared libraries.

–incobj objname
Instruments the named shared library. You can use the –incobj flag
more than once to specify several shared libraries.

When Atom finishes instrumenting the application, the current directory
contains an instrumented version of each specified shared library. The
instrumented application uses these versions of the libraries. Define the
LD_LIBRARY_PATH environment variable to tell the instrumented
application where the instrumented shared libraries reside.

By default, Third Degree does not instrument any of the shared libraries used
by the application; this makes the instrumentation operation much faster and
causes the instrumented application to run faster as well. Third Degree
detects and reports errors in the instrumented portion normally, but
terminates stack traces at the first uninstrumented procedure. It does not
detect errors in the uninstrumented libraries. If your partially instrumented

Debugging Programs with Third Degree 2–3

application crashes or malfunctions and you have fixed all of the errors
reported by Third Degree, reinstrument the application with all of its shared
libraries and run the new instrumented version.

2.1.2 Using Third Degree with Threaded Applications
Third Degree supports applications that use threads. To instrument a
threaded application, add the –env threads flag to the atom command
line that invokes the Third Degree tool.

2.2 Step-by-Step Example
Assume that you must debug the small application represented by the
following source code (ex.c):

1 /* ex.c */
2 #include <assert.h>;
3
4 int Bug() {
5 int q;
6 return q; /* q is uninitialized */
7 }
8
9 long* Booboo(int n) {
10 long* t = (long*) malloc(n * sizeof(long));
11 t[0] = Bug();
12 t[0] = t[1]+1; /* t[1] is uninitialized */
13 t[1] = -1;
14 t[n] = n; /* array bounds error*/
15 if (n<10) free(t); /* may be a leak */
16 return t;
17 }
18
19 main() {
20 long* t = Booboo(20);
21 t = Booboo(4);
22 free(t); /* already freed */
23 exit(0);
24 }

2.2.1 Customizing Third Degree
An optional customization file named .third is used to turn on and off
various capabilities of the Third Degree tool and to set the tool’s internal
parameters. Third Degree looks for a .third file first in the local directory,
then in your home directory. The .third customization file is further
discussed throughout this chapter and its syntax is described in the third(5)
reference page.

2–4 Debugging Programs with Third Degree

If you do not specify a .third customization file, Third Degree uses its
default settings:

• List memory errors

• Detect leaks at program exit

• No heap history

2.2.2 Modifying the Makefile
Add the following entry to the application’s Makefile:
ex.third: ex

atom ex -tool third -o ex.third

Build ex.third as follows:
> make ex.third
atom ex -tool third -o ex.third
> ex.third

Now run the instrumented application ex.third and check the log
ex.3log.

2.2.3 Examining the Third Degree Log File
The ex.3log file contains several sections, described in the following
sections.

2.2.3.1 Copy of the .third File

If you supplied a .third customization file, Third Degree copies it to the
log file. The short customization file used in this example requests a
summary of the contents of heap-allocated memory blocks when the program
finishes:
////////////// begin .3rd ///////////////////

heap_history yes

////////////// end .3rd ///////////////////

2.2.3.2 List of Runtime Memory Access Errors

The types of errors that Third Degree can detect at runtime include such
conditions as reading uninitialized memory, reading or writing unallocated
memory, freeing invalid memory, and certain serious errors likely to cause an
exception. For each error, an error entry is generated with the following
items:

Debugging Programs with Third Degree 2–5

• A banner line with the type of error and number – The error banner line
contains a three-letter abbreviation of each error (see Section 2.3 for a list
of the abbreviations). If the process that caused the error is not the root
process (for instance, because the application forks one or more child
processes), the process id of the process that caused the error also appears
in the banner line.

• An error message line formatted to look like a compiler error message –
Third Degree lists the file name and line number nearest to the location
where the error occurred. Usually this is the precise location where the
error occurred, but if the error occurs in a library routine, it may well
point to the place where the library call occurred.

• One or more stack traces – The last part of an error entry is a stack trace.
The first procedure listed in the stack trace is the procedure in which the
error occurred.

The following examples show entries from the log file:

• The following log entry indicates that a local variable of procedure Bug
was read before being initialized. The line number confirms that q was
never given a value.
-- rus -- 0 --
ex.c: 6: reading uninitialized local variable q of Bug

Bug ex.c, line 6
Booboo ex.c, line 11
main ex.c, line 20
__start crt0.s, line 370

• The following log entry indicates that an error occurred at line 12:
t[0] = t[1]+1

Because the array was not initialized, the program is using the
uninitialized value of t[1] in the addition. The memory block
containing array t is identified by the call stack that allocated it.
-- ruh -- 1 --
ex.c: 12: reading uninitialized heap at byte 8 of 160-byte block

Booboo ex.c, line 12
main ex.c, line 20
__start crt0.s, line 370

This block at address 0x38000000f10 was allocated at:
malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 20
__start crt0.s, line 370

• The following log entry indicates that the program has written to the
memory location one position past the end of the array, potentially

2–6 Debugging Programs with Third Degree

overwriting important data or even Third Degree internal data structures.
Keep in mind that certain errors reported later could be a consequence of
this error.
-- wih -- 2 --
ex.c: 14: writing invalid heap 1 byte beyond 160-byte block

Booboo ex.c, line 14
main ex.c, line 20
__start crt0.s, line 370

This block at address 0x38000000f10 was allocated at:
malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 20
__start crt0.s, line 370

• The following log entry indicates that an error occurred while freeing
memory that was previously freed. For errors involving calls to the
free function, Third Degree usually gives three call stacks:

– The call stack where the error occurred

– The call stack where the object was allocated.

– The call stack where the object was freed.

Upon examining the program, it is clear that the second call to Booboo
(line 20) frees the object (line 14), and that another attempt to free the
same object occurs at line 21.
-- fof -- 3 --
ex.c: 22: freeing already freed heap at byte 0 of 32-byte block

free malloc.c, line 833
main ex.c, line 22
__start crt0.s, line 370

This block at address 0x380000011a0 was allocated at:
malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 21
__start crt0.s, line 370

This block was freed at:
free malloc.c, line 833
Booboo ex.c, line 15
main ex.c, line 21
__start crt0.s, line 370

2.2.3.3 Memory Leaks

The following excerpt shows the report generated when leak detection on
program exit, the default, is selected. The report shows a list of memory

Debugging Programs with Third Degree 2–7

leaks sorted by importance and by call stack.

Searching for new leaks in heap after program exit

160 bytes in 1 object were found:

160 bytes in 1 leak (including 1 super leak) created at:
malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 20
__start crt0.s, line 370

Upon examining the source, it is clear that the first call of Booboo did not
free the memory object, nor was it freed anywhere else in the program.
Moreover, no pointer to this object exists anywhere in the program, so it
qualifies as a super leak. The distinction is often useful to find the real culprit
for large memory leaks.

Consider a large tree structure and assume that the pointer to the root has
been erased. Every object in the structure is a leak, but losing the pointer to
the root is the real cause of the leak. Because all objects but the root still
have pointers to them, albeit only from other leaks, only the root will be
identified as a super leak, and therefore the likely cause of the memory loss.

2.2.3.4 Heap History

When heap history is enabled, Third Degree collects information about
dynamically allocated memory. It collects this information for every object
that is freed by the application and for every object that still exists (including
memory leaks) at the end of the program’s execution. The following excerpt
shows a heap allocation history report:
--
--

Heap Allocation History for parent process

Legend for object contents:
There is one character for each 32-bit word of contents.
There are 64 characters, representing 256 bytes of memory
per line.
’.’ : word never written in any object.
’z’ : zero in every object.
’i’ : a non-zero non-pointer value in at least one object.
’pp’: a valid pointer or zero in every object.
’ss’: a valid pointer or zero in some but not all objects.

192 bytes in 2 objects were allocated during program execution:

--
160 bytes allocated (5% written) in 1 objects created at:

2–8 Debugging Programs with Third Degree

malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 20
__start crt0.s, line 370

Contents:
0: ..ii....................................

--
32 bytes allocated (25% written) in 1 objects created at:

malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 21
__start crt0.s, line 370

Contents:
0: ..ii....

The sample program allocated two objects, for a total of 192 bytes
(8*(20+4)). Because each object was allocated from a different call stack,
there are two entries in the history. Only one long (8 bytes) in each array
was set to a valid value, resulting in the written ratios of 8/160=5% and
8/32=25% shown. The character map, with one character for each 32-bit
word in the object, shows that the initialized value was the second long in
each of the arrays.

If the sample program was a real application, the fact that so little of the
dynamic memory was ever initialized is a warning that it was probably using
memory ineffectively.

2.2.3.5 Memory Layout

The memory layout section of the report summarizes the memory used by the
program by size and address range. The following excerpt shows a memory
layout section. The first two entries give the final (maximum) sizes of the
heap and stack at the end of the program. The last two entries give the text
and static data areas for the program and any shared libraries.

memory layout at program exit
heap 81920 bytes [0x38000000000-0x38000014000]
stack 2224 bytes [0x11ffff750-0x120000000]

ex data 23168 bytes [0x140000000-0x140005a80]
ex text 262144 bytes [0x120000000-0x120040000]

2.3 Interpreting Third Degree Error Messages
Third Degree reports both fatal errors and memory access errors.

Debugging Programs with Third Degree 2–9

Fatal errors include the following:

• Bad parameter

For example, malloc(-10).

• Failed allocator

For example, malloc returned a zero, indicating that no memory is
available.

• Call to the brk function with a nonzero argument

Third Degree does not allow you to call brk with a nonzero argument.

A fatal error causes the instrumented application to crash after flushing the
log file. If the application crashes, first check the log file and then rerun it
under a debugger.

Memory errors include the following (as represented by a three-letter
abbreviation):
��
Name Error��
ror Reading out of range: neither in heap, stack, or static area

ris Reading invalid data in stack: probably an array bound error

rus Reading an uninitialized (but valid) location in stack

rih Reading invalid data in heap: probably an array bound error

ruh Reading an uninitialized (but valid) location in heap

wor Writing out of range: neither in heap, stack, or static area

wis Writing invalid data in stack: probably an array bound error

wih Writing invalid data in heap: probably an array bound error

for Freeing out of range: neither in heap or stack

fis Freeing an address in the stack

fih Freeing an invalid address in the heap: no valid object there

fof Freeing an already freed object

fon Freeing a null pointer (really just a warning)

mrn malloc returned null��

You can suppress the reporting of specific memory errors by providing a
.third customization file containing the ignore option. This is often
useful when the errors occur within library functions for which you do not
have the source. Third Degree allows you to suppress specific memory errors
in individual procedures and files, and at particular line numbers. See
third(5) for more details.

2–10 Debugging Programs with Third Degree

2.3.1 Fixing Errors and Retrying an Application
If Third Degree reports many write errors from your instrumented program,
you should fix the first few errors and reinstrument the program. Not only
can write errors compound, but they can also corrupt Third Degree’s internal
data structures.

2.3.2 Detecting Uninitialized Values
Third Degree’s technique for detecting the use of uninitialized values can
cause programs that have worked to fail when instrumented. For example, if
a program depends on the fact that the first call to the malloc function
returns a block initialized to zero, the instrumented version of the program
will fail because Third Degree initializes all blocks to a nonzero value.

When it detects a signal, perhaps caused by dereferencing or otherwise using
this uninitialized value, Third Degree displays a message of the following
form:
*** Fatal signal SIGSEGV detected.
*** This can be caused by the use of uninitialized data.
*** Please check all errors reported in app.3log.

Using uninitialized data is the most likely reason for an instrumented
program to crash. To determine the cause of the problem, first examine the
log file for reading-uninitialized-stack and reading-uninitialized heap errors.
Very often, one of the last errors in the log file reports the cause of the
problem.

If you have trouble pinpointing the source of the error, you can confirm that
it is indeed due to reading uninitialized data by supplying a .third
customization file containing the uninit_heap no and
uninit_stack no options. Using the uninit_stack no option
disables the initialization of newly allocated stack memory that Third Degree
normally performs on each procedure entry. Similarly, the
uninit_heap no option disables the initialization of heap memory
performed on each dynamic memory allocation. By using one or both
options, you can alter the behavior of the instrumented program and may
likely get it to complete successfully. This will help you determine which
type of error is causing the instrumented program to crash and, as a result,
help you focus on specific messages in the log file.

Debugging Programs with Third Degree 2–11

Notes

Do not use the uninit_heap no and uninit_stack no
options under normal operation. They hamper Third Degree’s
ability to detect a program’s use of uninitialized data.

If your program establishes signal handlers, there is a small chance that Third
Degree’s changing of the default signal handler may interfere with it. Third
Degree defines signal handlers only for those signals that normally cause
program crashes (including SIGILL, SIGTRAP, SIGABRT, SIGEMT,
SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, and SIGXFSZ). You
can disable Third Degree’s signal handling by supplying a .third
customization file including the signals no option.

2.3.3 Locating Source Files
Third Degree prefixes each error message with a file and line number in the
style used by compilers. For example:
--- fof -- 3 --
ex.c: 21: freeing already freed heap at byte 0 of 32-byte block

free malloc.c
main ex.c, line 21
__start crt0.s

Third Degree tries to point as closely as possible to the source of the error,
and it usually gives the file and line number of a procedure near the top of
the call stack when the error occurred, as in this example. However, Third
Degree may not be able to find this source file, either because it is in a
library or because it is not in the current directory. In this case, Third Degree
moves down the call stack until it finds a source file to which it can point.
Usually, this is the point of call of the library routine.

In order to tag these error messages, Third Degree must determine the
location of the program’s source files. If you are running Third Degree in the
directory containing the source files, Third Degree will locate the source files
there. If not, to add directories to Third Degree’s search path, supply a
.third customization file including a use option. This allows Third
Degree to find the source files contained in other directories. Specifying the
use option with no arguments clears the search path. The location of each
source file is the first directory on the search path in which it is found.

2.4 Examining an Application’s Heap Usage
In addition to run-time checks that ensure that only properly allocated
memory is accessed and freed, Third Degree provides two ways to
understand an application’s heap usage:

2–12 Debugging Programs with Third Degree

• It can find and report memory leaks.

• It can list the contents of the heap.

By default, Third Degree checks for leaks when the program exits.

This section discusses how to use the information provided by Third Degree
to analyze an application’s heap usage.

2.4.1 Detecting Memory Leaks
A memory leak is an object in the heap to which no pointer exists. The
object can no longer be accessed and can no longer be used or freed. It is
useless and will never go away.

Third Degree finds memory leaks by using a simple trace-and-sweep
algorithm. Starting from a set of roots (the currently active stack and static
area), Third Degree finds pointers to objects in the heap and marks these
objects as visited. It then recursively finds all potential pointers inside these
objects and, finally, sweeps the heap and reports all unmarked objects. These
unmarked objects are leaks.

The trace-and-sweep algorithm finds all leaks, including circular structures.
This algorithm is conservative: in the absence of type information, any 64-bit
pattern that is properly aligned and pointing inside a valid object in the heap
is treated as a pointer. This assumption can infrequently lead to the
following problems:

• Third Degree considers pointers either to the beginning or interior of an
object as true pointers. Only objects with no pointers to any address they
contain are considered leaks.

• If an instrumented application hides true pointers by storing them in the
address space of some other process or by encoding them, Third Degree
will report spurious leaks. When instrumenting such an application with
Third Degree, create a .third configuration file that specifies the
pointer_mask option. The pointer_mask option lets you specify
a mask that is applied as an AND operator against every potential pointer.
For example, if you use the top 3 bits of pointers as flags, specify a mask
of 0x1fffffffffffffff. See third(5) for additional information on .third
configuration files.

• Third Degree can confuse any bit pattern (such as string, integer,
floating-point number, and packed struct) that looks like a heap pointer
with a true pointer, thereby missing a true leak.

• Third Degree does not notice pointers that optimized code stores only in
registers, not in memory. As a result, it may produce false leak reports.

Debugging Programs with Third Degree 2–13

2.4.2 Reading Heap and Leak Reports
You can supply .third configuration file options that tell Third Degree to
generate heap and leak reports incrementally, listing only new heap objects or
leaks since the last report or listing all heap objects or leaks. You can
request these reports when the program terminates, or before or after every
nth call to a user-specified function (see third(5) for details).

Third Degree lists memory objects and leaks in the report by decreasing
importance, based on the number of bytes involved. It groups together
objects allocated with identical call stacks. For example, if the same call
sequence allocates a million one-byte objects, Third Degree reports them as a
one-megabyte group containing a million allocations.

To tell Third Degree when objects or leaks are the same and should be
grouped in the report (or when objects or leaks are different and should not
be thus grouped), specify a .third configuration file containing the
object_stack_depth or leak_stack_depth option. (See
third(5) for further description of the .third configuration file.) These
options set the depth of the call stack that Third Degree uses to differentiate
leaks or objects. For example, if you specify a depth of 1 for objects, Third
Degree groups valid objects in the heap by the function and line number that
allocated them, no matter what function was the caller. Conversely, if you
specify a very large depth for leaks, Third Degree groups only leaks allocated
at points with identical call stacks from main upwards.

In most heap reports, the first few entries account for most of the storage, but
there is a very long list of small entries. To limit the length of the report,
you can use the .third configuration file object_min_percent or
leak_min_percent option. (See third(5) for further description of the
.third configuration file.) These options define a percentage of the total
memory leaked or in use by an object as a threshold. When all smaller
remaining leaks or objects amount to less than this threshold, Third Degree
groups them together under a single final entry.

Notes

Because the realloc function always allocates a new object
(by involving calls to malloc, copy, and free), its use can
make interpretation of a Third Degree report counterintuitive.
When an object is allocated, listed, or shrunk through a call to
the realloc function, it can be listed twice under different
identities.

Leaks and objects are mutually exclusive: an object must be reachable
from the roots.

2–14 Debugging Programs with Third Degree

2.4.3 Searching for Leaks
It may not always be obvious when to search for memory leaks. By default,
Third Degree checks for leaks after program exit, but this may not always be
what you want.

Leak detection is best done as near as possible to the end of the program
while all used data structures are still in scope. Remember, though, that the
roots for leak detection are the contents of the stack and static areas. If your
program terminates by returning from main and the only pointer to one of
its data structures was kept on the stack, this pointer will not be seen as a
root during the leak search, leading to false reporting of leaked memory. For
example:

1 main (int argc, char* argv[]) {
2 char* bytes = (char*) malloc(100);
3 exit(0);
4 }

When you instrument a program, providing a .third configuration file
specifying the all leaks before exit every 1 option line will
result in Third Degree not finding any leaks. When the program calls the
exit function, all of main’s variables are still in scope.

However, consider the following example:
1 main (int argc, char* argv[]) {
2 char* bytes = (char*) malloc(100);
3 }

When you instrument this program, providing the same (or no) .third
configuration file, Third Degree’s leak check may report a storage leak
because main has returned by the time the check happens. Either of these
two behaviors may be correct, depending on whether bytes was a true leak
or simply a data structure still in use when main returned.

Rather than reading the program carefully to understand when leak detection
should be performed, you can check for new leaks after a specified number of
memory allocations. The number of allocations depends on the
characteristics of the application being instrumented. Use a .third
configuration file specifying the following options:
no leaks at_exit
new leaks before proc_name every 10000

See third(5) for further description of the .third configuration file.

2.4.4 Interpreting the Heap History
When you instrument this program, providing a .third configuration file
specifying the heap_history yes option line allows Third Degree to
generate a heap history for the program. A heap history allows you to see

Debugging Programs with Third Degree 2–15

how the program used dynamic memory during its execution. You can use
this feature, for instance, to eliminate unused fields in data structures or to
pack active fields to use memory more efficiently. The heap history also
shows memory blocks that are allocated but never used by the application.

When heap history is enabled, Third Degree collects information about each
dynamically allocated object at the time it is freed by the application. When
program execution completes, Third Degree assembles this information for
every object that is still alive (including memory leaks). For each object,
Third Degree looks at the contents of the object and categorizes each word as
never written by the application, zero, a valid pointer, or some other value.

Third Degree next merges the information for each object with what it has
gathered for all other objects allocated at the same call stack in the program.
The result provides you with a cumulative picture of the use of all objects of
a given type.

Third Degree provides a summary of all objects allocated during the life of
the program and the purposes for which their contents were used. The report
shows one entry per allocation point (for example, a call stack where an
allocator function such as malloc or new was called). Entries are sorted by
decreasing volume of allocation.

Each entry provides the following:

• Information about all objects that have been allocated at any point up to
this point of the program’s execution

• Total number of bytes allocated at this point of the program’s execution

• Total number of objects that have been allocated up to this point of the
program’s execution

• Percentage of bytes of the allocated objects that have been written

• The call stack and a cumulative map of the contents of all objects
allocated by that call stack

The contents part of each entry describes how the objects allocated at this
point were used. If all allocated objects are not the same size, Third Degree
considers only the minimum size common to all objects. For very large
allocations, it summarizes the contents of only the beginning of the objects,
by default, the first kilobyte. You can adjust the maximum size value by
specifying the history_size option in the third configuration file.

2–16 Debugging Programs with Third Degree

In the contents portion of an entry, Third Degree uses one of the following
characters to represent each 32-bit longword that it examines:
��
Character Description��
Dot (.) Indicates a longword that was never written in any of the objects, a

definite sign of wasted memory. Further analysis is generally
required to see if it is simply a deficiency of a test that never used
this field; if it is a padding problem solved by swapping fields or
choosing better types; or if this field is obsolete.

z Indicates a field whose value was always 0 (zero) in every object.

pp Indicates a pointer: that is, a 64-bit quantity that was a valid pointer
into the stack, the static data area, or the heap; or was zero in every
object.

ss Indicates a sometime pointer. This longword looked like a pointer
in at least one of the objects, but not in all objects. It could be a
pointer that is not initialized in some instances, or a union.
However, it could also be the sign of a serious programming error.

i Indicates a longword that was written with some nonzero value in at
least one object and that never contained a pointer value in any
object.��

Even if an entry is listed as allocating 100MB, it does not mean that at any
point in time 100MB of heap storage were used by the allocated objects. It
is a cumulative figure; it indicates that this point has allocated 100MB over
the lifetime of the program. This 100MB may have been freed, may have
leaked, or may still be in the heap. The figure simply indicates that this
allocator has been quite active.

Ideally, the fraction of the bytes actually written should always be close to
100%. If it is much lower, some of what is allocated is never used. The
common reasons why a low percentage is given include the following:

• A large buffer was allocated, but only a small fraction was ever used.

• Parts of every object of a given type are never used. They may be
forgotten fields or padding between real fields resulting from alignment
rules in C structures.

• Some objects have been allocated, but never used at all. Sometimes leak
detection will find these objects if their pointers are discarded. If they are
kept on a free list, however, they will only be found in the heap history.

Debugging Programs with Third Degree 2–17

2.5 Using Third Degree on Programs with Insufficient
Symbolic Information
If the executable you instrumented contains too little symbolic information
for Third Degree to pinpoint some program locations, Third Degree prints
messages in which procedure names or file names or line numbers are
unknown. For example:
-- rus -- 0 --
reading uninitialized stack at byte 40 of 176 in frame of main

proc_at_0x1200286f0 libc.so
pc = 0x12004a268 libc.so
main app
__start app

Third Degree tries to print the procedure name in the stack trace, but if the
procedure name is missing (because this is a static procedure), Third Degree
prints the program counter in the instrumented program. This information
enables you to find the location with a debugger. If the program counter is
unavailable, Third Degree prints the address of the unnamed procedure.

More frequently, the file name or line number is unavailable because the
program’s symbol table is incomplete. In this case, Third Degree prints the
name of the object in which the procedure was found. This object may be
either the main application or a shared library.

If the lack of symbolic information is hampering your debugging, consider
recompiling the program with more symbolic information. For C and C++
programs, recompile with the –g flag and link without the –x flag.

2.6 Validating Third Degree Error Reports
The following spurious errors may occur in rare instances:

• Modifications to bit fields in optimized code are occasionally reported as
uses of uninitialized data. This situation usually occurs in initializations
of arrays of items smaller than 32 bits or in initializations of packed
structures, as in the following example:
void Packed() {

char c[4];
struct { int a:6; int b:9; int c:4} x;
c[0] = c[1] = 1; /* rus errors here ... */
x.a = x.c = x.e = 3; /* ... maybe here */

}

• Third Degree initializes newly allocated memory with a special value to
detect references to uninitialized variables (see Section 2.3.2). Programs
that explicitly store this special value into memory and subsequently read
it may cause spurious "reading uninitialized memory" errors.

2–18 Debugging Programs with Third Degree

• Storing the special uninitialized value into memory and subsequently
reading it (though the value is neither a valid pointer, a floating-point
number, a remarkable integer, nor ASCII characters).

If you think that you have found a false positive, you can verify it by using
the disassembler (dis) on the procedure in which the error was reported.
All errors reported by Third Degree are detected at loads and stores in the
application, and the line numbers shown in the error report match those
shown in the disassembly output.

2.7 Undetected Errors
Third Degree can fail to detect real errors, such as the following:

• Errors in logical operations on quantities smaller than 32 bits can go
undetected, for example:
short Small() {

short x;
x &= 1;
return x;

}

This programming practice may be considered an error if the program
depends on the least significant bit of x. It may not be considered an
error if the program depends only on the most significant bits.

• Third Degree cannot detect a chance access of the wrong object in the
heap. It can only detect memory accesses from objects. For example,
Third Degree cannot determine that a[last+100] is the same address
as b[0]. You can reduce the chances of this happening by altering the
amount of padding added to objects. To do this, supply a third
customization file that includes the object_padding option.

• Third Degree may not be able to detect if the application walks past the
end of an array by fewer than 8 bytes. Because Third Degree brackets
objects in the heap by "guard words," it will miss small array bounds
errors. In the stack, adjacent memory is likely to contain local variables,
and Third Degree may fail to detect larger bounds errors. For example,
issuing a sprintf operation to a local buffer that is much too small
may be detected, but if the array bounds are only exceeded by a few
words and enough local variables surround the array, the error can go
undetected.

• Hiding pointers by encoding them or by keeping pointers only to the
inside of a heap object will degrade the effectiveness of Third Degree’s
leak detection.

Debugging Programs with Third Degree 2–19

How to Order Additional Documentation����������������������
Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

800-DIGITALContinental USA,
Alaska, or Hawaii

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International ————— Local Digital subsidiary or
approved distributor

Internala ————— SSB Order Processing – NQO/V19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260����������������������

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

